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(a) Composition within the photorealism domain (b) Composition between real & oil painting domains

(c) Composition between real & sketchy painting domains (d) Composition between real & cartoon domains

‘an oil painting of a hamburger, Van
Gogh Style’

‘an oil painting of a waffle, Van Gogh
Style’

‘a professional photograph of an Eiffel
tower in the distance, ultra realistic’

‘a professional photograph of a puppy
on the beach, ultra realistic’

‘a pencil drawing of a sheep in the
sunset’

‘a pencil drawing of a panda in the
sunset’

‘a cartoon animation of buildings in the
distance’

‘a cartoon animation of an Eiffel tower
in the distance’

Figure 1: Image composition aims to seamlessly blend distinct objects into a specific visual context. Our training-free frame-
work equips attention-based text-driven diffusion models with the capability to achieve this task across various domains (a)
photorealism, (b) oil painting, (c) sketching, and (d) cartoon animation, within 20 sampling steps.

Abstract
Text-driven diffusion models have exhibited impres-

sive generative capabilities, enabling various image edit-
ing tasks. In this paper, we propose TF-ICON, a novel
Training-Free Image COmpositioN framework that har-
nesses the power of text-driven diffusion models for cross-
domain image-guided composition. This task aims to seam-
lessly integrate user-provided objects into a specific vi-
sual context. Current diffusion-based methods often involve
costly instance-based optimization or finetuning of pre-
trained models on customized datasets, which can poten-
tially undermine their rich prior. In contrast, TF-ICON can
leverage off-the-shelf diffusion models to perform cross-
domain image-guided composition without requiring addi-
tional training, finetuning, or optimization. Moreover, we
introduce the exceptional prompt, which contains no in-
formation, to facilitate text-driven diffusion models in ac-
curately inverting real images into latent representations,

forming the basis for compositing. Our experiments show
that equipping Stable Diffusion with the exceptional prompt
outperforms state-of-the-art inversion methods on various
datasets (CelebA-HQ, COCO, and ImageNet), and that TF-
ICON surpasses prior baselines in versatile visual domains.
Code is available at https://github.com/Shilin-LU/TF-ICON

1. Introduction
Image composition task involves incorporating unique

objects from different photos to create a harmonious image
within a specific visual context, a.k.a. image-guided com-
position. For instance, consider the scenario where one de-
sires to incorporate a beloved panda into one’s favorite art-
work, e.g., oil or sketchy painting. The objective is to create
a new image where the panda blends seamlessly into the
scene without altering the appearance of the panda and the
background, just as an artist meticulously crafted this panda

https://github.com/Shilin-LU/TF-ICON


for that artwork (See Figure 1). This task is inherently chal-
lenging, as it requires maintaining illumination consistency
and preserving identifying features. The challenge is further
compounded when the photos come from various domains.

While recently large-scale text-to-image models [10, 19,
53, 58, 61, 63, 81] have achieved remarkable success in text-
driven image generation, the ambiguity inherent in natural
language presents challenges in conveying precise and nu-
anced visual details, even with highly detailed text prompts.
Although this challenge is effectively addressed by enabling
personalized concept learning [25, 26, 35, 38, 62], these
methods require costly instance-based optimization and are
limited in generating concepts with specified backgrounds.
Recent studies [70, 80] have shown that diffusion models
can achieve image-guided composition by explicitly incor-
porating additional guiding images. However, these models
are retrained from the pretrained diffusion model on tailored
datasets, which can damage the rich prior of the model. As a
result, these models have limited compositional abilities be-
yond their training domain and still require significant com-
putational resources.

Given the wealth of large text-to-image models that have
been trained on extensive language-image datasets, we pose
a question: how could these models be leveraged for image-
guided composition without incurring costly training or
finetuning, thereby avoiding damaging the diverse prior?
To answer it, we propose the Training-Free Image COm-
positioN (TF-ICON) framework, which equips attention-
based text-to-image diffusion models with the capability to
perform image-guided composition without requiring ad-
ditional training, fine-tuning, extra data, or optimization.
To the best of our knowledge, this is the first training-free
framework developed for image-guided composition. The
framework is compatible with various diffusion model sam-
plers, enabling completion within 20 steps, and harnesses
rich semantic knowledge to facilitate image-guided compo-
sitions across diverse domains (see Figure 1).

Our approach constitutes an image-guided composition
interface through denoising from a reliable starting latent
code with the injection of composite self-attention maps.
Finding the latent code that allows for reconstructing an
input image while maintaining its editability, a.k.a. image
inversion, is a challenging yet crucial step for state-of-the-
art (SOTA) image editing frameworks involving real images
[15, 27, 36, 40, 50, 55, 56, 73]. For diffusion models, while
denoising diffusion implicit models (DDIM) inversion [68]
has been effective for unconditional diffusion models, it
falls short for text-driven diffusion models [27, 52, 73, 74].
To circumvent this, we introduce the exceptional prompt to
accurately invert real images into latent codes upon pre-
trained text-to-image models to serve for further compo-
sition generation. The accurate latent codes are composed
as the starting noise for the diffusion process. Through the

gradual injection of composite self-attention maps that are
specifically designed to reflect the relations between guid-
ing images, we are able to infuse contextual information
from the background into the incorporated objects, which
results in harmonious image-guided compositions.

To summarize, we make the following key contributions:

1. We demonstrate the superior performance of high-
order diffusion ODE solvers compared to commonly
used DDIM inversion for real image inversion.

2. We present an exceptional prompt that allows text-
driven models to achieve accurate invertibility, laying a
solid groundwork for subsequent editing. Experimen-
tal results show that it surpasses SOTA inversion meth-
ods on three vision datasets.

3. We propose the first training-free framework that
enables cross-domain image-guided composition for
attention-based diffusion models.

4. We demonstrate quantitatively and qualitatively that
our framework outperforms prior baselines for image-
guided composition.

2. Related Work

Image composition. Image composition is widely applied
to electronic commerce, entertainment, and data augmen-
tation [20, 45] for downstream tasks. It can be broadly
categorized into two types: text-guided [5, 6, 11, 23, 47]
and image-guided [8, 24, 41, 70, 79, 80, 82]. The former
involves composing multiple objects specified by only a
text prompt without limiting the appearance of objects,
as long as their semantics align with the prompt. Despite
the great successes of text-conditioned models, they are
often prone to semantic errors [23, 58], especially when
the text prompt involves multiple objects. These errors
include attribute leakage, attribute interchange, and missing
objects, which cause the generated images to critically
different from the user’s intention [23, 58]. As a result,
extensive prompt engineering [77] is often necessary to
achieve the desired results. In contrast to text-only guided
composition, image-guided composition involves incorpo-
rating specific objects and scenarios from user-provided
photos, potentially with the aid of a text prompt. However,
due to the nature of involving additional real images, it is
more challenging particularly when images from different
visual domains. Conventionally, image-guided composition
is divided into several sub-tasks [54], such as object place-
ment [7, 12, 42, 72, 83], image blending [78, 84], image
harmonization [14, 16, 31, 79], and shadow generation
[30, 44, 66, 86], each of which is typically addressed by
different models and pipelines.

Image inversion. Extensive research has been conducted
on image inversion for GANs, including latent-based op-
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Figure 2: The proposed training-free image composition framework. (a) The exceptional prompt is used to invert the main
and reference images into noises xm

T ,x
r
T , which are then composed to form the starting point x∗T for the composition process.

(b) Three constituents are composed for injecting into the composition process at early timesteps, including self-attention
maps from the main and reference image reconstruction processes, as well as cross attention between the main and reference
images. For better clarity and readability, the original main and reference images are shown in the pixel space instead of the
VAE latent space, and the reference image is presented without resizing and zero-padding.

timization [1, 2, 34], encoders [3, 59, 71], and fine-tuning
[4, 60]. For diffusion models, DDIM [68] is a widely used
technique for inversion in image editing frameworks. How-
ever, in text-driven settings, DDIM leads to significant re-
construction distortion due to the instability resulting from
classifier-free guidance (CFG) [18, 29]. Recently, null-text
inversion [52] has been proposed to achieve accurate in-
version by optimizing the unconditional prediction of the
text-to-image model. It demonstrates promising results but
requires instance-based optimization. Concurrently, EDICT
[74] also achieves near-perfect inversion, albeit doubling
the computation time of the diffusion process.

3. Preliminary
Diffusion probabilistic models (DPM) [18, 28, 61, 67]

are generative models in which an image is generated by
progressively denoising from Gaussian noise. The forward
diffusion process gradually perturbs data with infinite noise
scales, which can be modeled as the solution of a stochas-
tic differential equation (SDE) {xt}Tt=0. Formally, given a
data sample x0 ∼ p0 = pdata, random noise is gradually
injected, eventually resulting in a sample xT which is typ-
ically distributed as a tractable prior pT without any infor-

mation of p0, as described by the following SDE [37, 69]:

dxt = f(xt, t)dt+ g(t)dwt, (1)

where wt ∈ Rd is the standard Wiener process (a.k.a.,
Brownian motion), and f(·, t) and g(t) are commonly des-
ignated as the drift and diffusion coefficient, respectively.
On the other hand, the reverse diffusion process can be de-
scribed by the reverse-time SDE from T to 0 [69]:

dxt = [f(xt, t)− g(t)2∇x log pt(xt)]dt+ g(t)dw̄t, (2)

where w̄t is the Wiener process in the reverse time. The
score function ∇x log pt(xt) is the only unknown term and
can be estimated by a neural network εθ(xt, t) whose pa-
rameter θ is optimized by a denoising objective [28, 69].

Upon attaining the trained model that predicts the score
function accurately, it can be utilized to numerically solve
the reverse SDE (Eq. (2)), enabling the generation of sam-
ples from a noise distribution. Song et al. [69] outline vari-
ous methods, including Variance Exploding (VE), Variance
Preserving (VP), and sub-VP SDE, for constructing SDEs
that perturb the unknown data distribution into a fixed prior.
In this work, we leverage the pre-trained text-to-image La-



tent Diffusion Model (LDM) [61], a.k.a. Stable Diffusion,
which applies the VP SDE in the latent space.

4. Method
Our objective is to utilize a main (background) image

Im, a reference (foreground) image Ir, a text prompt P ,
and a binary mask Muser which designates the region of in-
terest within the main image, to generate a modified im-
age I∗. The resultant image I∗ should contain the refer-
ence subject with identifying features within the mask, i.e.
id(I∗ �Muser) ≈ id(Ir), while concurrently ensuring that
the complementing area closely resembles the main image,
i.e. I∗ � (1 −Muser) ≈ Im � (1 −Muser). Moreover, it is
ideal for the transition between the areas inside and outside
the mask to be imperceptible.

We propose a training-free framework that can make use
of attention-based pre-trained text-to-image models to per-
form image-guided composition. To the best of our knowl-
edge, it is the first training-free framework for image-guided
composition, which can be accomplished within 20 steps of
sampling. The framework is mainly comprised of two steps:
image inversion (Section 4.1), and composition genera-
tion (Section 4.2), as shown in Figure 2. The full algorithm
is presented in Appendix B.2.

4.1. Image Inversion with Exceptional Prompt

Achieving precise manipulation of real images often
necessitates an accurate inversion process that identifies
the corresponding latent representation, which not only
provides editability for meaningful manipulation but also
accurately reconstructs the input image [27, 71]. For diffu-
sion models, optimal editability is typically characterized
by a noise encoding that conforms to the ideal statistical
properties of zero-mean, unit-variance Gaussian noise [55].

ODE inversion. Most diffusion frameworks for image edit-
ing [15, 27, 36, 40, 55, 73] use DDIM inversion to invert the
real image into its latent representation. However, our find-
ings suggest that this may not be the optimal choice for in-
verting real images. It has been proven that DDIM is a first-
order discretization of the associated probability flow ordi-
nary differential equations (ODE) of Eq. (2) [64, 68, 69]:

dxt =
[
f(xt, t)−

1

2
g(t)2∇x log pt(xt)

]
dt, (3)

which can be solved using εθ(xt, t) and shares the con-
sistent marginal probability distribution {pt(xt)}Tt=0 with
Eq. (2). Various samplers [33, 46, 48, 49] have been devel-
oped for solving the diffusion ODE starting from noise xT
to achieve fast sampling (10∼20 steps). We offer the insight
that utilizing these ODE solvers in turn as encoders starting
from the real image x0 yields better latent representation
xT , compared with those obtained through commonly used

(a) Original (d) Uncond.(c) Cond.(b) CFG (e) Ours

Figure 3: The real image reconstruction results using Sta-
ble Diffusion with (b) classifier-free guidance (CFG) output
ε̂θ(xt, t, E ,∅); (c) conditional output εθ(xt, t, E); (d) un-
conditional output εθ(xt, t,∅); and (e) ours. The prompts
for (b) and (c) are ‘a photo of a singer’, ‘a photo of a car’,
and ‘an oil painting’. See Appendix A.3 for elaboration.

DDIM. A quantitative analysis is given in Appendix A.1.
The enhanced alignment between the forward and backward
ODE trajectories in the high-order DPM-Solver++ [49] im-
plies that it is better suited for real image inversion. Thus,
this paper employs it for all inversions of diffusion models.

Exceptional prompt. In the unconditional setting εθ(xt, t),
solving the diffusion ODE (Eq. (3)) from 0 to T enables us
to obtain the better latent code xT for the real image x0.
However, in the text-driven setting εθ(xt, t, E), existing im-
age editing works [27, 52, 73, 74] have shown that the in-
version process is prone to significant reconstruction errors,
due to the instability induced by CFG [18, 29]:

ε̂θ(xt, t, E ,∅)=s · εθ(xt, t, E)+(1−s) · εθ(xt, t,∅), (4)

where ∅ = ψ(””) and E = ψ(P) are embeddings of
the null and normal prompt, and s is the guidance scale.
Our experiments further reveal that even without CFG,
both conditional output εθ(xt, t, E) and unconditional out-
put εθ(xt, t,∅) of text-to-image diffusion models still pro-
duce large reconstruction errors, as depicted in Figure 3.

To achieve accurate inversion, we present a straight-
forward yet effective solution, namely exceptional prompt,
Pexceptional. Intuitively, any information contained within the
input prompt can result in the deviation of the backward
ODE trajectories from the forward trajectories. Hence, we
remove all information by setting all token numbers to a
common value and eliminating positional embeddings for
the text prompt, as depicted in Figure 4. Importantly, the ex-
ceptional prompt is distinguished from the null prompt by
its absence of special tokens, such as [startoftext],
[endoftext], and [pad], which still retain informa-
tion. The exceptional prompt is applied only in image inver-
sion but not in the composition process. The choice of the
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(a) Normal Prompt

“a cat photo”
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(b) Null Prompt (c) Exceptional Prompt

…

[start]:
49406

[end]:
49407

[pad]:0

Figure 4: The illustration of comparison among (a) Normal
Prompt, (b) Null Prompt, and (c) Exceptional Prompt.

token value does not significantly affect the inversion. The
detailed analysis of the exceptional prompt and token value
selection is provided in Appendix A.2 and A.4, respectively.

Figure 3 visually demonstrates the effectiveness of the
exceptional prompt. Our results εθ(xt, t,W) with the ex-
ceptional prompt embeddingW = ψ(Pexceptional) are more
visually accurate than others. The quantitative experiments
are shown in Section 5.1. All the results in Figure 3 are ob-
tained by solving the forward and backward diffusion ODEs
using the second-order DPM-Solver++ [49] in 20 steps.

4.2. Training-Free Image Composition

Upon equipping the accurate invertibility, image com-
position can be performed based on it. The composition
process consists of two key components: noise incorpora-
tion and composite self-attention maps injection.

Noise incorporation. Before inverting images into noises,
a simple preprocessing step is necessary for the reference
image. Typically, only the foreground in the reference is
desired for composition, so the preprocessing step involves
using a pretrained segmentation model [87] to remove the
background, resizing and repositioning the object to match
the user’s mask in the main image, and padding it with ze-
ros to ensure it is the same size as the main image (See
Appendix B.1 for visual illustration).

Once the preprocessing is complete, the main and ref-
erence images are inverted to corresponding noises xm

T and
xr
T by solving diffusion ODEs (Eq. (3)) from 0 to T with the

exceptional prompt Pexceptional. xm
T and xr

T are then merged
with standard Gaussian noise z to create the starting point
x∗T for generating the composition. Formally, the incorpo-
rated noise x∗T is calculated by

x∗T = xr
T �Mseg +xm

T �(1−Muser)+z�(Muser⊕Mseg),
(5)

where z ∼ N (0, I), Muser is the user mask, Mseg is the
segmentation mask for reference image, and Muser ⊕Mseg

is the XOR of them, which is the transition area. The in-
corporation of z enhances the smoothness of the transition
between the regions inside and outside the user mask, by ef-
fectively leveraging the prior knowledge of the text-driven
diffusion model to inpaint the transition area. Empirically,
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Figure 5: A toy example for attention composition.

for cross-domain composition, incorporating the starting
point in the noise space usually is more effective, while
solely for photorealism, composing in the pixel/latent space
and then inverting it as the starting point is more favorable.

Composite self-attention map injection. The incorporated
noise x∗T is employed as the starting point for solving the
diffusion ODE from T to 0 with a normal prompt P to ulti-
mately generate the composition. P is intended to assist in
inpainting transition areas. However, relying solely on noise
incorporation, the pretrained text-to-image model cannot
preserve the appearance of the main and reference images
effectively, as shown in Figure 7. To tackle this problem, we
propose injecting composite self-attention maps in a spe-
cially designed manner, as the semantic information is basi-
cally retained within the rows and columns of self-attention
maps (See Appendix E for visual illustrations).

The composite self-attention map comprises three con-
stituents: two self-attention maps, Am

l,t and Ar
l,t, corre-

sponding to the main and reference images, and a cross-
attention map, Across

l,t , calculated between them. The com-
position way is illustrated in Figure 5. To compose the ref-
erence image in the blue regions of Figure 5 (a), its self-
attention map Ar

l,t should be placed in the corresponding
blue regions of Figure 5 (b), since the 5th patch can only
attend to the patches 6, 9, and 10 in the context of self-
attention. The green regions in Figure 5 (b) should contain
the cross-attention map, Across

l,t , which infuses contextual in-
formation from the white regions into the blue regions. If
the green regions are preserved as the self-attention of the
white regions without replacement, the information stored
there only reflects the relation between the original patches,
such as the 0th and original 5th patches in the example of
index (5,0) or (0,5). This results in a lack of surrounding
information being provided to the new 5th patch, such as
painting or sketching, which is necessary for seamless ob-
ject transition to other domains (See ablation in Figure 7).

Essential constituents Am
l,t,A

r
l,t,A

cross
l,t are calculated

using self-attention modules of the pretrained Stable Dif-
fusion. Typically, a self-attention module at layer l contains
three projection matrices Wq

l , Wk
l ,W

v
l in the same dimen-

sion Rd×d. Denote the spatial features of the main and ref-
erence image at timestep t and layer l as fm

l,t ∈ R(h×w)×d



and f r
l,t ∈ R(h′×w′)×d, respectively, where h′ × w′ is the

size of the reference image after resizing to match the size
of the user mask. The queries, keys, and values for each
self-attention module are obtained as:

qm
l,t =fm

l,tW
q
l , km

l,t =fm
l,tW

k
l , vm

l,t =fm
l,tW

v
l , (6)

qr
l,t =f r

l,tW
q
l , kr

l,t =f r
l,tW

k
l , vr

l,t =f r
l,tW

v
l , (7)

where qm
l,t, k

m
l,t, v

m
l,t ∈ R(h×w)×d, and qr

l,t, k
r
l,t, v

r
l,t ∈

R(h′×w′)×d. Thus, Am
l,t,A

r
l,t, and Across

l,t are then calculated
and composed as A∗l,t for injection:

Am
l,t = Softmax

(
qm
l,t · (km

l,t)
T/
√
d
)
, (8)

Ar
l,t = Softmax

(
qr
l,t · (kr

l,t)
T/
√
d
)
, (9)

Across
l,t = Softmax

(
qm
l,t · (kr

l,t)
T/
√
d
)
, (10)

A∗l,t = ϑcompose(A
m
l,t,A

r
l,t,A

cross
l,t ), (11)

where Am
l,t ∈ R(h×w)×(h×w), Ar

l,t ∈ R(h′×w′)×(h′×w′),
Across
l,t ∈ R(h×w)×(h′×w′), and ϑcompose is the function to

bulid composite self-attention maps A∗l,t based on patch in-
dices (Figure 5).

As a result, three diffusion ODEs are solved simultane-
ously from T to 0. As depicted in Figure 2 (b), ODEs start
from the accurate inverted noises xr

T ,x
m
T , and the interpo-

lated noise x∗T , respectively. The first two ODEs are solved
using the exceptional prompt Pexceptional to progressively re-
construct the main and reference, thus allowing for the pre-
cise retention of Am

l,t, A
r
l,t, and Across

l,t at each time step t.
These attention maps are then composed and injected into
the third ODE for generating a natural and cohesive compo-
sition with a normal prompt P .

To balance the generation of high-level context and finer
details [13, 40], we set a threshold τA to determine the time
steps for injecting composite self-attention maps in the early
stage (t ∈ [T × τA, T ]) and allow the model to explore
ODE trajectories through a normal prompt P in the later
stage (t ∈ [0, T × τA]), guided by the prior of the pre-
trained model. However, this freedom, without the impo-
sition of attention injection constraints, often results in de-
viations from the desired background (see Figure 7). Thus,
similar to [6], we set an additional threshold, denoted as
τB , which regulates the trajectory rectification process. This
process entails replacing the regions outside the user mask
with the reconstructed main image at various time steps, i.e.,
x̂∗t = x∗t�Muser +xm

t �(1−Muser), where t ∈ [T×τB , T ].
Note that only preserving the background at the final step
can lead to noticeable artifacts, as shown in Appendix B.3.

5. Experiments
This section consists of two sets of experiments. The

first set assesses the effectiveness of the exceptional prompt

Table 1: The reconstruction comparison on CelebA-HQ.

Method MAE ↓ LPIPS ↓ SSIM ↑

Optimization
I2S [1] 0.064 0.134 0.872
PTI [60] 0.062 0.132 0.877

Encoder

pSp [59] 0.079 0.169 0.793
e4e [71] 0.092 0.221 0.742
ReStyle w/ pSp [3] 0.073 0.145 0.823
ReStyle w/ e4e [3] 0.089 0.202 0.758
HFGI w/ e4e [76] 0.062 0.127 0.877

Diffusion

SD w/ CFG 0.134 0.340 0.637
SD w/ Cond. 0.126 0.308 0.654
SD w/ Uncond. 0.126 0.304 0.655
DiffusionCLIP [36] 0.020 0.073 0.914
Ours 0.019 0.047 0.918

Upper Bound VQAE [21] 0.018 0.043 0.919

Table 2: The further reconstruction comparison on COCO
and ImageNet. *: an upper bound.

Method MSCOCO (5000) ImageNet (3000)

MAE ↓ LPIPS ↓ SSIM ↑ MAE ↓ LPIPS ↓ SSIM ↑
SD w/ CFG 0.150 0.458 0.568 0.132 0.496 0.575
SD w/ Cond. 0.122 0.359 0.633 0.109 0.389 0.645
SD w/ Uncond. 0.120 0.363 0.636 0.114 0.406 0.635
Ours 0.030 0.073 0.868 0.033 0.087 0.852

VQAE* [21] 0.030 0.069 0.870 0.032 0.084 0.854

(Section 5.1). The second set evaluates our image com-
position framework qualitatively and quantitatively (Sec-
tion 5.2), followed by an ablation study (Section 5.3).

5.1. Image Reconstruction

To assess the effectiveness of the exceptional prompt,
we compared its performance with SOTA GAN [1, 3, 59,
60, 71, 76] and diffusion [36] inversion methods on the
CelebA-HQ [32], following the same setting as described
in [36, 76]. Additionally, we conducted experiments on the
ImageNet [17] and COCO [43] with Stable Diffusion to fur-
ther validate our findings. Our results (Tables 1 and 2) show
that the exceptional prompt is highly effective in producing
reconstructions that closely approximate the upper bound
established by the vector quantized autoencoder (VQAE)
[21] across all metrics, including MAE, LPIPS [85], and
SSIM. The qualitative comparison is shown in Figure 3.
All results of Stable Diffusion, including ours, are sampled
by the second-order DPM-Solver++ [49]. Experimental set-
tings are detailed in Appendix B.4.

5.2. Image Composition Comparisons

Test benchmark. As there is currently no benchmark
for testing cross-domain image-guided composition as a
whole, we developed a test benchmark containing 332
samples. Each sample in the benchmark consists of a main
(background) image, a reference (foreground) image, a
user mask, and a text prompt. The main images comprise



DCCF Paint by ExampleBlended Diffusion SDEdit (0.6)Textual Inversion OursSDEdit (0.4)

‘a pencil drawing of a piece of bread and other food, gray tone’

‘a professional photograph of a teddy bear, ultra realistic’

‘an oil painting of a dog, Van Gogh Style’

Input

‘a cartoon animation of a cake, a croissant, a piece of bread and a cup of coffee’

Deep Image Blending

Figure 6: Qualitative comparison with SOTA and concurrent baselines in image-guided composition for sketching, photore-
alism, painting, and cartoon animation domains. Additional results are available in Appendix H.2.

Table 3: Quantitative evaluation results for image composi-
tion in the photorealism domain.

Method LPIPS(BG) ↓ LPIPS(FG) ↓ CLIP(Image) ↑ CLIP(Text) ↑
SDEdit (0.4) [50] 0.35 0.62 80.56 27.73
SDEdit (0.6) [50] 0.42 0.66 77.68 27.98
Blended [5] 0.11 0.77 73.25 25.19
Paint [80] 0.13 0.73 80.26 25.92
DIB [84] 0.11 0.63 77.57 26.84
Ours 0.10 0.60 82.86 28.11

four visual domains: photorealism, pencil sketching, oil
painting, and cartoon animation. All reference images are
from the photorealism domain as the reference requires
segmentation models, which are generally more effective
in this domain. Further details are available in Appendix G.

Qualitative comparisons. Our qualitative comparisons
are performed across four visual domains, employing
SOTA and concurrent baselines that are applicable to
image-guided composition, including Deep Image Blend-
ing (DIB) [84], DCCF [79], Blended Diffusion [5], Textual
Inversion [25], Paint by Example [80], and SDEdit [50]
under two different noising levels. As shown in Figure 6,
our framework is capable of seamlessly composing objects
into various domains while maintaining their identities.
In contrast, DIB and DCCF fall short in processing the
transition areas, leading to noticeable artifacts. Blended
Diffusion’s foreground generation and Textual Inversion’s

background generation rely solely on text prompts, causing
deviations from the user’s intention. While Paint by Exam-
ple effectively composes images within its photorealistic
training domain, it struggles to adapt to other domains.
Additionally, SDEdit with fewer timesteps is suitable for
image composition in terms of preserving the identifying
features of the reference, but the background is changed.
See Appendix H.2 for additional comparisons.

Quantitative analysis. The baselines are primarily trained
in the photorealism domain, where the objective metrics
are more effective; therefore, we focused our quantitative
comparison within this domain and relied on user study for
comparison in other domains. We assess the same baselines
as in the qualitative comparison, with the exception of
Textual Inversion [25], which involves instance-based op-
timization, and DCCF [79], which is used for harmonizing
images after copy-and-paste operations. Four metrics are
considered: (1) LPIPS(BG) [85] measures the background
consistency, (2) LPIPS(FG) [85] evaluates the low-level
similarity between the edited region and the reference
foreground, (3) CLIP(Image) [57] evaluates the semantic
similarity between the edited region and the reference in the
CLIP embedding space, and (4) CLIP(Text) [57] measures
the semantic alignment between the text prompt and the
resultant image. As presented in Table 3, our method
outperforms all baselines. We achieve well preservation



Table 4: User study: higher score, better ranking. P: photo-
realism; O: oil painting; S: sketchy painting; C: cartoon.

Method P & P P & O P & S P & C Total

Blended [5] 1.807 2.314 2.680 2.100 2.093
SDEdit (0.6) [50] 2.368 3.063 2.409 2.713 2.485
Paint [80] 2.879 2.306 2.043 2.673 2.666
DCCF [79] 3.838 3.237 3.297 3.470 3.583
Ours 4.108 4.080 4.571 4.043 4.175

Table 5: Ablation study: quantitative comparison of various
variants of our framework.

Config LPIPS(BG) ↓ LPIPS(FG) ↓ CLIP(Image) ↑ CLIP(Text) ↑
Baseline 0.34 0.65 75.13 29.00
+ Pexceptional 0.32 0.64 78.54 28.23
+ SA injection 0.25 0.61 81.64 28.58
+ CA injection 0.26 0.60 81.63 28.52
+ Background 0.10 0.60 82.86 28.11

of the background, high object correspondence in both
low-level and high-level feature spaces, as well as a high
degree of alignment with the text prompt.

User study. We conducted a user study to compare image
composition baselines across domains. We recruited 50 par-
ticipants via Amazon and tasked them with completing 40
ranking questions. Each question consists of 5 options, gen-
erated using distinct methods. Details are available in Ap-
pendix D. The ranking criteria comprehensively considered
foreground preservation, background consistency, seamless
composition, and text alignment. The results are listed in
Table 4, where the domain information is presented in the
format of ‘foreground domain & background domain’, e.g.,
photorealism & oil painting. Our method was favored by
most participants across different domains.

5.3. Ablation Study

We ablate our key design choices in the following cases:
(1) Baseline, where the composition is generated by solv-
ing the diffusion ODE from T to 0 using DPM-Solver++
without any injection. The starting point is composed by in-
verted noises under the normal prompt; (2) The exceptional
prompt is applied to obtain accurate inverted noises; (3) The
self-attention maps Am

l,t and Ar
l,t are composed and then in-

jected; (4) The cross-attention Across
l,t between the main and

reference images is further composed for injection; (5) The
background preservation is applied.

Table 5 presents the quantitative results, which indicate
that the complete algorithm outperforms other variants in all
metrics except for CLIP(Text). Notably, the baseline achieves
the best CLIP(Text) as it generates compositions solely re-
lying on the normal prompt without any extra constraint.
While metrics alone may not reveal the complete effective-
ness of cross-attention injection, Figure 7 illustrates that
the interactions between the main and reference images

Baseline + SA Injection + Background

‘a pencil drawing of a muffin and other food, gray tone’

Input + CA Injection

‘an oil painting of a burrito, Van Gogh Style’

+ exceptional

Figure 7: Ablation study of different variants of our frame-
work. SA: self-attention. CA: cross-attention.

are highly beneficial to both foreground and background
in terms of preserving appearance and switching domains.
Note that preserving the background at different noise levels
affects both background and foreground, which is distinct
from preserving solely at the final step (Appendix B.3). Ad-
ditional ablation results are shown in Appendix H.2.

6. Limitations and Future Work
The primary limitation of our work lies in its inability to

generate an object view that critically differs from the given
reference. As a result, the choice of reference image may be
restricted at times. This is because the model relies on self-
attention maps to provide layout and appearance informa-
tion, which in turn constrains the development of alternative
views. While introducing a loose self-attention injection can
generate different views, this often compromises the preser-
vation of the object’s appearance. To overcome this, further
research could explore utilizing personalized concept learn-
ing techniques, such as Textual Inversion [25], to encode
identity information in the text prompt through special em-
beddings. Alternatively, utilizing NeRF-relevant techniques
[9, 51, 75] can generate other views of the object for a spe-
cific scene, but this can require expensive training. Further-
more, due to the fact that our approach relies on Stable Dif-
fusion, it inherits its shortcomings and biases, which may
result in producing artifacts in certain scenarios.

7. Conclusion
We introduced a method that leverages the high-order

ODE solver with the exceptional prompt to achieve pre-
cise inversion of real images, which serves as a founda-
tion for further manipulation. Building upon this, we pro-
pose a novel training-free framework, TF-ICON, that en-
ables attention-based text-to-image diffusion models to per-
form image-guided composition across different domains.
Our experimental results demonstrate that our approach out-
performs the SOTA baselines for both image inversion and
composition. We believe that image composition has the
potential to become an essential tool for content creators,
offering significant benefits for downstream applications in
various industries.
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Appendix

A. Additional Analysis
A.1. Better Latent Code with ODE Solvers

In Section 4.1, we argue that the utilization of diffusion
ODE solvers [33, 46, 48, 49] as encoders, commencing
from the real image x0, results in better latent representa-
tion xT as compared to those acquired via the commonly
used DDIM [68]. This improvement is attributed to the bet-
ter alignment between the forward and backward ODE tra-
jectories produced by higher-order ODE solvers.

This claim is supported by the experimental results pre-
sented in Figure 8. Specifically, we performed image in-
version on the COCO2017 [43] validation set of 5000 im-
ages using DDIM, as well as the second and third order
DPM-Solver++ [49]. This involved encoding real images
into noises and subsequently decoding the noises back into
real images, with both procedures consisting of 50 steps.
The forward and backward intermediate states were pre-
served as {xenc

0 ,xenc
1 , · · · ,xenc

50 } and {xdec
0 ,xdec

1 , · · · ,xdec
50 },

respectively. L1 and L2 distances between the forward and
backward processes’ intermediates were computed at each
time step. Figure 8 presents the average values of the dis-
tances.

The experimental results demonstrate that the higher-
order DPM-Solver++ exhibits a smaller difference between
the forward and backward intermediates, signifying better
alignment between the forward and backward trajectories,
in comparison to DDIM, which is equivalent to a first-order
solver. Furthermore, the experimental results suggest that
an increase in the order of the ODE solver does not lead to
additional improvement in alignment.

Figure 9 presents a visual comparison between image
compositions achieved through the utilization of high-order
DPM solvers and DDIM inversion. Due to subpar alignment
between forward and backward intermediates, The inver-
sion codes of DDIM yield blurred images when using the
same sampling steps (20 steps).

Given that Lu et al. [49] has established the suitability
of the second-order DPM-Solver++ for guided sampling1,
we employed the second-order one for all the experiments
conducted with TF-ICON.

A.2. Exceptional Prompt Analysis

Denote the image features as f ∈ Rs×d1 and the em-
bedding of the exceptional prompt as T ∈ Rl×d2 , where
d1, d2 denote the dim of the image and text embeddings,
s = h × w is the res of the latent space, and l is the maxi-
mum length of the prompt. By assigning the same value to
all tokens and discarding the positional embeddings, each
row of T is identical. In a cross-attention module, we have

1https://github.com/LuChengTHU/dpm-solver
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Figure 8: The comparison of the alignment of forward and
backward trajectories from DDIM inversion and high-order
DPM-Solver++. L1 and L2 distances were computed at
each time step between the forward and backward inter-
mediates, and then averaged over 5000 images. The curves
representing the second and third order DPM-Solver++ are
almost overlapping. Please zoom in for a closer look.

Wq ∈ Rd1×d1 , Wk,Wv ∈ Rd2×d1 and q = f ·Wq,k =
T ·Wk,v = T ·Wv. When a matrix with identical rows
multiplies another matrix, the resultant matrix also exhibits
identical rows. Thus, k,v have identical rows, and q·kT has
identical columns. Applying the softmax row-wise to q ·kT
generates a constant attention map A = 1

l ·1s×l. The output
o = A · v hence exhibits identical rows and is then added
to the input, i.e., f + o, before moving to the next layer.
Each row of fs×d1 is the embedding of each patch. In the
exceptional prompt, all patch embeddings experience a con-
sistent directional movement, but normal and null prompts
with varying row vectors cause embeddings to move in var-
ious directions, thereby disrupting the image pattern.

A.3. Elaboration of Inversion Results

Two specific points in Figure 3 require attention. Firstly,
it is true that CFG typically amplifies instability, resulting
in subpar metrics (Tables 1 and 2), while satisfactory recon-
struction from CFG output is possible, albeit less common,
even with only DDIM (Figure 10 in [27] and 3rd row of
Figure 3). Secondly, the unconditional output does not nec-
essarily outperform CFG or conditional one, as the uncon-
ditional/null prompt contains special symbols (Figure 4),
which also add information and lead to inconsistent direc-
tional shifts in image embeddings (See Section A.2). Thus,
the unconditional output may perform poorly than others
(4th and 6th row of Figure 17). Figure 3 shows uncondi-
tional (1st row), conditional (2nd row), or CFG (3rd row)
output can yield the best reconstruction among them.

A.4. Token Value Analysis

In Section 4.1, we contend that the choice of token value
has no significant impact on the inversion performance. To
justify this, we uniformly sampled 100 token values from
the set of 49407 values and employed them as the common
token value in the exceptional promptPexceptional. All experi-
mental results are obtained using Stable Diffusion [61] with

https://github.com/LuChengTHU/dpm-solver


‘a professional photograph of a huge buddha in the distance, ultra realistic’

Foreground DPM-2Background DPM-3DDIM

‘ a professional photograph of a teddy bear, ultra realistic’

‘ a professional photograph of a mailbox on the grass, ultra realistic’

‘ a professional photograph of skyscrapers in the distance, ultra realistic’

‘ a cartoon animation of a hamburger, a croissant, a piece of bread and a cup of coffee’

‘ an oil painting of a tortoise, Van Gogh Style’

‘ a pencil drawing of a shopping mall in the distance, black and white painting’

Figure 9: The visual comparison between image composi-
tions achieved through the utilization of high-order DPM
solvers++ and DDIM inversion. The image compositions
resulting from DDIM inversion exhibit more blurring when
compared to those generated by high-order DPM solvers++
employing the same 20-step sampling process. Augment-
ing the solver’s order does not result in noteworthy visual
enhancements.

the exceptional prompt (100 different token values), sam-
pled through the second-order DPM-Solver++ in 50 steps.
Three metrics, namely MAE, LPIPS, and SSIM, were used
to assess the inversion performance.

The experimental results for four randomly sampled im-
ages from the COCO2017 validation set are shown in Fig-
ure 10. The top row of Figure 10 displays a magnified view
of a specific area from the second row. Notably, for a single
image, each token value produces nearly identical inversion
performance, with only minor fluctuations occurring within
a narrow range.

Table 6: Means and standard deviations of metrics among
the reconstruction results of 100 tokens, averaged over 150
images randomly sampled from the COCO.

MAE LPIPS SSIM

Mean 0.0323 0.0703 0.8560
Standard Deviation 9.22×10−5 9.29×10−4 3.81×10−4

Furthermore, we randomly sampled 150 images from
the COCO2017 validation set. For each image, we calcu-
lated the means and standard deviations of the three met-
rics among the reconstruction results of the 100 tokens. The
metrics were averaged over 150 images, as listed in Table 6.
Importantly, the average standard deviations of all metrics
for the reconstructions of different tokens are remarkably
low, indicating that the selection of token values does not
significantly affect the performance of inversion.

B. Implementation Details

B.1. Preprocessing

Figure 11 illustrates the preprocessing process. Typi-
cally, only the foreground in the reference image is desired
for composition, so a pretrained segmentation model [87] is
utilized to segment the object from the background. Next,
the extracted object is resized and repositioned to corre-
spond with the user’s mask in the main image. Finally, zero
padding is applied to the object to ensure it is the same size
as the main image.

B.2. Algorithm and Running Time

Algorithm 1 describes the pseudocode of the proposed
training-free image composition framework (TF-ICON).
The synthesis time for a single image using one A100 GPU
card is around 8 seconds, depending on the size of the user
mask and reference image.

B.3. Background Preservation

As discussed in Sections 4.2 and 5.3, preserving the
background during denoising should be done gradually at
different levels of noise. Preserving the background only at
the final time step may result in noticeable artifacts. Fig-
ure 12 provides a comparison between the naı̈ve imple-
mentation, which preserves the background only at the final
step, and our implementation, which follows a gradual way.
The naı̈ve implementation results in obvious artifacts, while
ours successfully produces high-quality results.

The rationale behind this phenomenon is that when two
noisy images are blended at a certain noise level, the result-
ing image may lie outside the targeted manifold. The sub-
sequent steps of diffusion can rectify this issue by moving



Figure 10: The analysis of the impact of the common token values in the exceptional prompt. The first row displays a
magnified view of an area from the second row. For each image randomly sampled from the COCO, the exceptional prompt
is applied with 100 uniformly sampled token values on Stable Diffusion to perform image inversion. The inversion metrics,
including MAE, SSIM, and LPIPS, exhibit negligible variations as the token value is modified.

Initial Reference Segmentation Resize to Match Mask Reposition & Pad Zeros

Figure 11: The preprocessing pipeline for the reference im-
age. (1) The centralized reference image is initially pro-
cessed by a pretrained segmentation model; (2) the seg-
mented object region is then extracted, and its dimension
is adjusted to match the size of the user mask; (3) the re-
sized image is finally repositioned and padded with zeroes
to match the main image’s dimension.

it toward the next level manifold, thereby gradually improv-
ing the coherence of the image. However, if the blending is
only performed at the final step in a simplistic manner, the
image cannot be corrected any further.

B.4. Experimental Settings and Hyperparameters

Image Reconstruction. To conduct inversion experiments
on the CelebA-HQ [32] (i.e., Table 1), we followed the ex-
perimental settings outlined in [36, 76]. The first 1500 im-
ages from the CelebA-HQ were inverted, and the quality of

(a) Background (b) Foreground (c) Naïve (d) Ours

Figure 12: The comparison between two implementations
of background preservation. Naı̈ve implementation only
preserves the background at the final step, while ours grad-
ually blends background information at various time steps.

reconstruction from the inverted latent was evaluated using
MAE, LPIPS, and SSIM metrics. All Stable Diffusion re-



Algorithm 1 Training-Free Image Composition

1: Input: The embeddings of the normal prompt and the excep-
tional prompt E = ψ(P) and W = ψ(Pexceptional), the main
image Im, the reference image Ir, the user mask Muser, the
segmentation mask Mseg, thresholds τA, τB

2: Output: The composition result I∗

3: // Step 1: Starting Point Incorporation
4: xm

0 = VQ-Encoder (Im); xr
0 = VQ-Encoder (Ir)

5: for t = 1, . . . , T do
6: xm

t ← DPM-Solver++ (xm
t−1, t− 1,W)

7: xr
t ← DPM-Solver++ (xr

t−1, t− 1,W)
8: end for
9: z ∼ N (0, I)

10: x∗
T ← xr

T �Muser +xm
T � (1−Muser)+z� (Muser⊕Mseg)

11: // Step 2: Image Composition
12: for t = T, . . . , 1 do
13: xm

t−1, {Am
t } ← DPM-Solver++ (xm

t , t,W)
14: xr

t−1, {Ar
t} ← DPM-Solver++ (xr

t, t,W)
15: {Across

t } ← CrossAtten(xm
t ,x

r
t)

16: {A∗
t } ← ϑcompose ({Am

t } , {Ar
t} , {Across

t })
17: if t > int(τA × T ) then
18: x∗

t−1 ← DPM-Solver++ (x∗
t , t, E , {A∗

t })
19: else
20: x∗

t−1 ← DPM-Solver++ (x∗
t , t, E)

21: end if
22: if t > int(τB × T ) then
23: x∗

t−1 ← x∗
t−1 �Muser + xm

t−1 � (1−Muser)
24: end if
25: end for
26: I∗ = VQ-Decoder(x∗

0)
27: return I∗

sults were sampled in 50 steps using the second-order DPM-
Solver++. The normal prompt for the conditional output and
the output with CFG was set as ‘a portrait photo’. The CFG
scale was 5. The common token value of the exceptional
prompt was 7788.

In further experiments on the COCO2017 (i.e., Table 2),
the entire validation set with 5000 images was used. The
first listed caption of each image in the annotations serves
as the normal prompt. In the experiments on the ImageNet
[17] (i.e., Table 2), 3000 images were randomly sampled
from the ImageNet validation set. ‘a photo of the [class]’
was used as the normal prompt. For both datasets, the CFG
scale was set at 5, and the common token value of 7788
was used in the exceptional prompt.

Image Composition. Since most baselines are trained only
in the photorealism domain, where objective metrics are
more effective, we conducted our quantitative compari-
son in this domain. However, for other domains, we re-
lied on user study and qualitative comparisons. For quan-
titative comparison in the photorealism domain, we used

the official implementation of Deep Image Blending (DIB)2

[84], Blended Diffusion3 [5], Paint by Example4 [80], and
SDEdit5 [50]. Our framework utilizes Stable Diffusion6

with the second-order DPM-Solver++ to solve all three
ODEs in 20 steps. The first two inversion ODEs, aimed at
obtaining accurate inverted noises and self-attention maps,
were performed under the exceptional prompt with a com-
mon token value of 7788, while the last ODE utilized the
normal prompt with a CFG scale of 2.5. The threshold val-
ues τA and τB were set at 0.4 and 0, respectively.

C. Ablation of Value Injection

We conducted an additional ablation study in which we
not only injected the attention maps but also included the
values information. Specifically, we multiply the attention
maps with the corresponding values for both the main and
reference images, and then compose and inject them. The
metrics obtained on the dataset are as follows: LPIPS(BG) =
0.10, LPIPS(FG) = 0.63, CLIP(Image) = 81.37, CLIP(Text) =
27.68. These metrics are lower compared to injecting only
the attention maps.

The rationale behind this is that injecting all the infor-
mation might result in a more rigid generation, potentially
hindering the ability to transition across visual domains due
to the direct replacement of all information from the guiding
images. On the other hand, by injecting self-attention maps
only, we are able to preserve the semantic layouts while in-
corporating values derived from the inherent composition
features. The visual comparison is shown in Figure 13.

D. User Study

To compare image composition baselines across various
domains, we conducted a user study by recruiting 50 partic-
ipants from Amazon. The participants were asked to com-
plete 40 ranking questions, with each question comprising
a foreground image, a background image with a bounding
box to indicate the region of interest, and a text prompt.
For each question, the participants were presented with five
images generated using different methods. They were re-
quested to rank five images from 1 to 5 (1 being the best
and 5 being the worst) based on comprehensive criteria:

1. Text Alignment: The resulting image should match
the specific style mentioned in the text prompt. For
example, if the target domain is cartoon, oil painting,
pencil drawing, or photorealism, the generated image
should align with that style.

2https://github.com/owenzlz/DeepImageBlending
3https://github.com/omriav/blended-latent-diffusion
4https://github.com/Fantasy-Studio/Paint-by-Example
5https://github.com/ermongroup/SDEdit
6https://github.com/Stability-AI/stablediffusion

https://github.com/owenzlz/DeepImageBlending
https://github.com/omriav/blended-latent-diffusion
https://github.com/Fantasy-Studio/Paint-by-Example
https://github.com/ermongroup/SDEdit
https://github.com/Stability-AI/stablediffusion


‘a professional photograph of an eiffel tower in the distance, ultra realistic’

Foreground OursBackground Value Injection

‘a professional photograph of a teddy bear, ultra realistic’

‘a pencil drawing of a muffin and other food, gray tone’

‘a pencil drawing of a cup of coffee and other food, gray tone’

Figure 13: The visual comparison between injecting all in-
formation and our implementation. Injecting values leads to
a more rigid generation, potentially impeding the smooth
transition across visual domains. This impact becomes par-
ticularly evident when transferring to the sketchy domain.

2. Foreground Preservation: The generated image
should well-preserve the features or identity of the
given object within the mask region, such that the
viewers can recognize that the given and the generated
objects are the same even in different domains.

3. Background Preservation: The background outside
the mask should remain unchanged.

4. Seamless Composition: The resulting image should
be of high quality and free from any apparent artifacts
that might indicate it was generated by AI or copied
and pasted.

To ensure all 40 questions are meaningful, we filtered out
simple questions that, without any domain or illumination
adjustment, only require copy-pasting operations to make
the composition look natural despite the foreground and
background being from different domains. We show exam-
ples of such cases in Figure 14. After the filtering process,
we randomly sampled questions from the test benchmark. In
addition to the regular ranking questions, we also included
three attention-checking questions to filter out random or
invalid responses. The final valid questions consisted of 20
photorealism, 7 oil painting, 7 pencil sketching, and 6 car-
toon animation questions.

(b) Example 2(a) Example 1

Figure 14: Examples of meaningless questions. The result-
ing images were generated by simply segmenting objects
from the reference image and pasting them onto the region
of interest in the background image without modifications.
Despite the lack of any modification, the results appear al-
most seamless.

(a) Original (d) Column(c) Row(b) SA (e) PCA

Figure 15: The visualization of (a) original image; (b) self-
attention (SA) maps ∈ R4096×4096 of (a); (c) the averaging
result of unfolding all rows ∈ R1×4096 of (b) into R64×64;
(d) same operation as (c) for columns; (e) visualizing top-3
PCA components of (b).

The ranking score of the options in each question is cal-
culated by:

score =
1

n
·

5∑
i=1

vi · wi (12)

where vi denotes the number of votes for the option to rank
i, wi indicates the weight of rank i, and n is the number
of respondents. The first rank has the highest weight of 5
and the last rank has the lowest weight of 1. The result-
ing score reflects the overall ranking of the options, with a
higher score indicating a better ranking.

E. Self-Attention Visualization

Figure 15 demonstrates how self-attention maps preserve
semantic information. By unfolding the rows or columns
of the self-attention maps, we can discern the underlying
semantics of the image.



F. Elaboration for Toy Example
This section further analyzes the attention composition

in Figure 5. The self-attention maps of the blue region in
Figure 5 (a) Ar

l,t ∈ R4×4 are partitioned into four blocks
based on the patch indices and composed into the blue re-
gions in Am

l,t ∈ R16×16, as illustrated in Figure 5 (b). The
dimension of Across

l,t ∈ R16×4 is identical to that of the
green regions, with the exception of the interactions be-
tween white patches indexed at 5, 6, 9, and 10, and blue
patches with corresponding indices. Since the aim of the
attention composition is to infuse contextual information
from the white region into the blue region, the information
from the white patches indexed at 5, 6, 9, and 10 is irrele-
vant and can be disregarded.

G. Test Benchmark
To facilitate evaluating cross-domain image-guided

composition as a unified task, we have created a compre-
hensive test benchmark comprising 332 samples. Each sam-
ple in the benchmark comprises a main (background) im-
age, a reference (foreground) image, a user mask, and a
text prompt. Images were collected from Open Images [39],
PASCAL VOC [22], COCO [43], Unsplash7, and Pinter-
est8. The main images comprise four visual domains: pho-
torealism, pencil sketching, oil painting, and cartoon ani-
mation. All reference images are from the photorealism do-
main, as the reference requires segmentation models, which
are generally more effective in this domain. The selection
objective is to ensure that the main image and reference im-
age share similar semantics, thereby guaranteeing a reason-
able combination. The text prompt is manually labeled ac-
cording to the semantics of the main and reference images.

The reference images comprise a wide range of ob-
ject classes, including ‘Car’, ‘Panda’, ‘Dog’, ‘Elephant’,
‘Fox’, ‘Castle’, ‘Buddha’, ‘Bird’, ‘Sheep’, ‘Fire Hy-
drant’, ‘Mailbox’, ‘Hamburger’, ‘Chicken’, ‘Skyscraper’,
‘Rocket’, ‘Chair’, ‘Cabinet’, ‘Bag’, ‘Teddy Bear’, ‘Mall’,
‘Tower’, ‘Building’, ‘Flower’, ‘Tortoise’, ‘Sparrow’, ‘Os-
trich’, ‘Horse’, ‘Cat’, ‘Goose’, ‘Tiger’, ‘Eagle’, ‘Squir-
rel’, ‘Raccoon’, ‘Penguin’, ‘Sea Lion’, ‘Goat’, ‘Owl’,
‘Microwave’, ‘Bread’, ‘Cake’, ‘Tomato’, ‘Fish’, ‘Crois-
sant’, ‘Hot Dog’, ‘Waffle’, ‘Pancake’, ‘Popcorn’, ‘Burrito’,
‘Muffin’, ‘Juice’, ‘Coffee’, ‘Paper Towel’, ’Tart’, ‘Sand-
wich’, ‘Teapot’, ‘Lemon’, ‘Candle’, ‘Spoon’, ‘Grapefruit’,
‘Turkey’, ‘Pomegranate’, ‘Doughnut’, ‘Cantaloupe’, ‘Sand-
wich’, ‘Cantaloupe’, and ‘Turkey’. Given that most image
composition baselines are trained exclusively on photoreal-
istic images, our test benchmark contains a greater propor-
tion of photorealism samples to enable a quantitative com-
parison. Specifically, the benchmark includes 237 photore-

7https://unsplash.com/
8https://www.pinterest.com/

alism samples, as well as 37 oil painting, 31 pencil sketch-
ing, and 27 cartoon animation samples. The benchmark will
be publicly available for use in evaluating the performance
of cross-domain image-guided composition methods.

H. Additional Qualitative Results
H.1. Image Reconstruction

Figures 16, 17, and 18 present additional qualitative im-
age reconstruction comparisons among different outputs of
Stable Diffusion on COCO, ImageNet, and CelebA-HQ, re-
spectively.

H.2. Image Composition

Figure 19 presents additional ablation study results. Fur-
ther qualitative comparisons of image composition across
various domains are exhibited in Figures 20, 21, 22, 23, 24,
and 25.

I. Societal Impacts
TF-ICON offers a means of image-guided composi-

tion that empowers individuals without professional artistic
skills to create compositions. While this technology is ben-
eficial, it can also be misused for malicious purposes, such
as in cases of harassment or spreading fake news. More-
over, image composition is closely related to image genera-
tion, so it is essential to recognize that using diffusion mod-
els trained on web-scraped data, such as LAION [65], can
potentially introduce biases. Specifically, LAION has been
found to contain inappropriate content such as violence,
hate, and pornography, as well as racial and gender stereo-
types. Consequently, diffusion models trained on LAION,
such as Stable Diffusion and Imagen [63], are prone to ex-
hibit social and cultural biases. As such, using such models
raises ethical concerns and should be approached with care.
Finally, the capacity to compose across artistic domains has
the potential to be exploited for copyright infringement pur-
poses, as users could generate images in a similar style
without the consent of the artist. Although the resulting
generated artwork may be readily distinguishable from the
original, future technological advances could render such
infringement challenging to identify or legally prosecute.
Thus, we encourage users to use this method cautiously and
only for appropriate purposes.

https://unsplash.com/
https://www.pinterest.com/


(a) Original (b) CFG Output (c) Conditional Output (d) Unconditional Output (e) Ours

Figure 16: Comparison of image reconstruction results on the COCO using Stable Diffusion with (b) classifier-free guid-
ance (CFG) output ε̂θ(xt, t, E ,∅), (c) conditional output εθ(xt, t, E), (d) unconditional output εθ(xt, t,∅), and (e) ours
εθ(xt, t,W).



(a) Original (b) CFG Output (c) Conditional Output (d) Unconditional Output (e) Ours

Figure 17: Comparison of image reconstruction results on the ImageNet using Stable Diffusion with (b) classifier-free guid-
ance (CFG) output ε̂θ(xt, t, E ,∅), (c) conditional output εθ(xt, t, E), (d) unconditional output εθ(xt, t,∅), and (e) ours
εθ(xt, t,W).



(a) Original (b) CFG Output (c) Conditional Output (d) Unconditional Output (e) Ours

Figure 18: Comparison of image reconstruction results on the CelebA-HQ using Stable Diffusion with (b) classifier-free
guidance (CFG) output ε̂θ(xt, t, E ,∅), (c) conditional output εθ(xt, t, E), (d) unconditional output εθ(xt, t,∅), and (e) ours
εθ(xt, t,W).



‘a pencil drawing of a fox in the sunset’

‘a pencil drawing of a panda in the sunset’

‘an oil painting of a sheep, Van Gogh Style’

‘a professional photograph of a puppy in the snow, ultra realistic’

‘a professional photograph of a spoon and spring rolls, ultra realistic’

‘a professional photograph of a cup of coffee and spring rolls, ultra realistic’

Baseline + SA Injection + BackgroundInput + CA Injection+ exceptional

Figure 19: Ablation study of different variants of our framework. SA: self-attention. CA: cross-attention.



Paint by Example Blended Diffusion SDEdit (0.4) Ours

‘a pencil drawing of a sheep in the sunset’

Deep Image BlendingInput

‘a pencil drawing of a dog in the sunset’

‘a pencil drawing of a tortoise in the sunset’

DCCF

‘a pencil drawing of a puppy lying in the sunset’

‘a pencil drawing of a cat walking in the sunset’

‘a pencil drawing of a car and a willow’

‘a pencil drawing of a car and a willow’
Figure 20: Qualitative comparison with SOTA baselines in image composition for the pencil sketching domain.



Paint by Example Blended Diffusion SDEdit (0.4) Ours

‘an oil painting of a roast chicken, Van Gogh Style’

Deep Image BlendingInput

‘an oil painting of a tomato, Van Gogh Style’

‘an oil painting of a croissant, Van Gogh Style’

DCCF

‘an oil painting of a teapot, Van Gogh Style’

‘an oil painting of a hot dog bread, Van Gogh Style’

‘an oil painting of a chocolate doughnut, Van Gogh Style’

‘an oil painting of a cup of coffee, Van Gogh Style’

Figure 21: Qualitative comparison with SOTA baselines in image composition for the oil painting domain.



Paint by Example Blended Diffusion SDEdit (0.4) Ours

‘a cartoon animation of a panda in the forest’

Deep Image BlendingInput

‘a cartoon animation of a squirrel in the forest’

‘a cartoon animation of a goose in the forest’

DCCF

‘a cartoon animation of an elephant in the forest’

‘a cartoon animation of a fox in the forest’

‘a cartoon animation of a white fox in the forest’

‘a cartoon animation of a puppy in the forest’
Figure 22: Qualitative comparison with SOTA baselines in image composition for the cartoon animation domain.



Paint by Example Blended Diffusion SDEdit (0.4) Ours

‘a professional photograph of a spoon and spring rolls, ultra realistic’

Deep Image BlendingInput

‘a professional photograph of a tart and spring rolls, ultra realistic’

‘a professional photograph of popcorn and spring rolls, ultra realistic’

DCCF

‘a professional photograph of a cantaloupe and spring rolls, ultra realistic’

‘a professional photograph of a cup of coffee and strawberries, ultra realistic’

‘a professional photograph of a hamburger and some strawberries, ultra realistic’

‘a professional photograph of a pancake and strawberries, ultra realistic’
Figure 23: Qualitative comparison with SOTA baselines in image composition for the photorealism domain.



Paint by Example Blended Diffusion SDEdit (0.4) Ours

‘a professional photograph of a puppy in the snow, ultra realistic’

Deep Image BlendingInput

‘a professional photograph of a wet puppy in a pool, ultra realistic’

‘a professional photograph of a castle is located in the distance of the forest, ultra realistic’

DCCF

‘a professional photograph of skyscrapers behind the forest, ultra realistic’

‘a professional photograph of skyscrapers, ultra realistic’

‘a professional photograph of a cabinet, ultra realistic’

‘a professional photograph of a wooden chair in the bedroom’

Figure 24: Qualitative comparison with SOTA baselines in image composition for the photorealism domain.



Paint by Example Blended Diffusion SDEdit (0.4) Ours

‘a professional photograph of a teddy bear, ultra realistic’

Deep Image BlendingInput

‘a professional photograph of a mall in the distance, ultra realistic’

‘a professional photograph of an eiffel tower in the distance, ultra realistic’

DCCF

‘a professional photograph of a puppy lying in a garden, ultra realistic’

‘a professional photograph of a white tiger in a garden, ultra realistic’

‘a professional photograph of a sheep in a garden, ultra realistic’

‘a professional photograph of a white fox in a garden, ultra realistic’

Figure 25: Qualitative comparison with SOTA baselines in image composition for the photorealism domain.
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